Размер шрифта
Цветовая схема
Изображения
Форма
Межсимвольный интервал
Межстрочный интервал
стандартные настройки
обычная версия сайта
закрыть
  • Вход
  • Регистрация
  • Помощь
Выбрать БД
Простой поискРасширенный поискИстория поисков
Главная / Результаты поиска

Non-woven bilayered biodegradable chitosan-gelatin-polylactide scaffold for bioengineering of tracheal epithelium

Romanova O. A., Tenchurin T. H., Demina T. S., Sytina E. V., Shepelev A. D., Rudyak S. G., Klein O. I., Krasheninnikov S. V., Safronova E. I., Kamyshinsky R. A., Mamagulashvili V. G., Akopova T. A., Chvalun S. N., Panteleyev A. A.
Cell Proliferation
Vol.52, Issue3, Num.e12598
Опубликовано: 2019
Тип ресурса: Статья

DOI:10.1111/cpr.12598

Аннотация:
Objectives: The conversion of tissue engineering into a routine clinical tool cannot be achieved without a deep understanding of the interaction between cells and scaffolds during the process of tissue formation in an artificial environment. Here, we have investigated the cultivation conditions and structural features of the biodegradable non-woven material in order to obtain a well-differentiated human airway epithelium. Materials and methods: The bilayered scaffold was fabricated by electrospinning technology. The efficiency of the scaffold has been evaluated using MTT cell proliferation assay, histology, immunofluorescence and electron microscopy. Results: With the use of a copolymer of chitosan-gelatin-poly-l-lactide, a bilayered non-woven scaffold was generated and characterized. The optimal structural parameters of both layers for cell proliferation and differentiation were determined. The basal airway epithelial cells differentiated into ciliary and goblet cells and formed pseud
Ключевые слова:
airway; cell differentiation; electrospinning; pseudostratified epithelium; tissue equivalent
biomaterial; chitosan; collagen type 4; copolymer; cytokeratin 10; cytokeratin 14; fibronectin; gelatin; molecular scaffold; mucin 5AC; nanofiber; tubulin; tubulin IV; unclassified drug; biomaterial; chitosan; gelatin; polyester; polylactide; airway epithelium cell; Article; biodegradability; bioengineering; cell differentiation; cell proliferation; cell viability; ciliated epithelium cell; coculture; controlled study; electron microscopy; electrospinning; goblet cell; histology; human; human cell; human tissue; immunofluorescence; keratinocyte; pore size; trachea epithelium; biomechanics; cell culture; cell survival; chemistry; cytology; epithelium cell; fibroblast; growth, development and aging; materials testing; physiology; procedures; scanning electron microscopy; tissue engineering; tissue scaffold; trachea; ultrastructure; Biocompatible Materials; Biomechanical Phenomena; Cell Differentiation; Cell Survival; Cells, Cultured; Chitosan; Coculture Techniques; Epithelial Cells; Fibr
Язык текста: Английский
ISSN: 1365-2184
Romanova O. A.
Tenchurin T. H.
Demina T. S. Tat`yana Sergeevna 1986-
Sytina E. V.
Shepelev A. D.
Rudyak S. G.
Klein O. I.
Krasheninnikov S. V.
Safronova E. I. Elizaveta Igorevna 1994-
Kamyshinsky R. A.
Mamagulashvili V. G.
Akopova T. A.
Chvalun S. N.
Panteleyev A. A.
Романова О. А.
Тенчурин Т. Х.
Демина Т. С. Татьяна Сергеевна 1986-
Сyтина Е. В.
Шепелев А. Д.
Рудяк С. Г.
Клеин О. И.
Крашенинников С. В.
Сафронова Е. И. Елизавета Игоревна 1994-
Камyшинскy Р. А.
Мамагулашвили В. Г.
Акопова Т. А.
Чвалун С. Н.
Пантелеьев А. А.
Non-woven bilayered biodegradable chitosan-gelatin-polylactide scaffold for bioengineering of tracheal epithelium
Текст визуальный непосредственный
Cell Proliferation
John Wiley & Sons, Inc.
Vol.52, Issue3 Num.e12598
2019
Статья
airway cell differentiation electrospinning pseudostratified epithelium tissue equivalent
biomaterial chitosan collagen type 4 copolymer cytokeratin 10 cytokeratin 14 fibronectin gelatin molecular scaffold mucin 5AC nanofiber tubulin tubulin IV unclassified drug biomaterial chitosan gelatin polyester polylactide airway epithelium cell Article biodegradability bioengineering cell differentiation cell proliferation cell viability ciliated epithelium cell coculture controlled study electron microscopy electrospinning goblet cell histology human human cell human tissue immunofluorescence keratinocyte pore size trachea epithelium biomechanics cell culture cell survival chemistry cytology epithelium cell fibroblast growth, development and aging materials testing physiology procedures scanning electron microscopy tissue engineering tissue scaffold trachea ultrastructure Biocompatible Materials Biomechanical Phenomena Cell Differentiation Cell Survival Cells, Cultured Chitosan Coculture Techniques Epithelial Cells Fibr
Objectives: The conversion of tissue engineering into a routine clinical tool cannot be achieved without a deep understanding of the interaction between cells and scaffolds during the process of tissue formation in an artificial environment. Here, we have investigated the cultivation conditions and structural features of the biodegradable non-woven material in order to obtain a well-differentiated human airway epithelium. Materials and methods: The bilayered scaffold was fabricated by electrospinning technology. The efficiency of the scaffold has been evaluated using MTT cell proliferation assay, histology, immunofluorescence and electron microscopy. Results: With the use of a copolymer of chitosan-gelatin-poly-l-lactide, a bilayered non-woven scaffold was generated and characterized. The optimal structural parameters of both layers for cell proliferation and differentiation were determined. The basal airway epithelial cells differentiated into ciliary and goblet cells and formed pseud