Размер шрифта
Цветовая схема
Изображения
Форма
Межсимвольный интервал
Межстрочный интервал
стандартные настройки
обычная версия сайта
закрыть
  • Вход
  • Регистрация
  • Помощь
Выбрать БД
Простой поискРасширенный поискИстория поисков
Главная / Результаты поиска

Flexible self-powered piezo-supercapacitor system for wearable electronics

Gilshteyn E. P., Amanbaev D., Silibin M. V., Sysa A., Kondrashov V. A., Anisimov A. S., Kallio T., Nasibulin A. G.
Nanotechnology
Vol.29, Issue32, Num.325501
Опубликовано: 2018
Тип ресурса: Статья

DOI:10.1088/1361-6528/aac658

Аннотация:
The integration of energy harvesting and energy storage in a single device both enables the conversion of ambient energy into electricity and provides a sustainable power source for various electronic devices and systems. On the other hand, mechanical flexibility, coupled with optical transparency of the energy storage devices, is required for many applications, ranging from self-powered rolled-up displays to wearable optoelectronic devices. We integrate a piezoelectric poly(vinylidene-trifluoroethylene) (P(VDF-TrFE)) film into a flexible supercapacitor system to harvest and store the energy. The asymmetric output characteristics of the piezoelectric P(VDF-TrFE) film under mechanical impacts results in effective charging of the supercapacitors. The integrated piezo-supercapacitor exhibits a specific capacitance of 50 F g-1. The open-circuit voltage of the flexible and transparent supercapacitor reached 500 mV within 20 s during the mechanical action. Our hybridized energy harvesting an
Ключевые слова:
energy harvesting; energy storage; piezosupercapacitor; poly(vinylidene-trifluoroethylene); single-walled carbon nanotubes
Capacitance; Display devices; Electric energy storage; Electron devices; Energy harvesting; Energy storage; Flexible electronics; Open circuit voltage; Optoelectronic devices; Piezoelectricity; Single-walled carbon nanotubes (SWCN); Wearable technology; Yarn; Mechanical flexibility; Mechanical impacts; Optical transparency; Output characteristics; piezosupercapacitor; Specific capacitance; Sustainable power; Trifluoroethylene; Supercapacitor
Язык текста: Английский
ISSN: 1361-6528
Gilshteyn E. P.
Amanbaev D.
Silibin M. V. Maksim Viktorovich 1983-
Sysa A.
Kondrashov V. A.
Anisimov A. S.
Kallio T.
Nasibulin A. G.
Гилштеyн Е. П.
Аманбаев Д.
Силибин М. В. Максим Викторович 1983-
Сyса А.
Кондрашов В. А.
Анисимов А. С.
Каллио Т.
Насибулин А. Г.
Flexible self-powered piezo-supercapacitor system for wearable electronics
Текст визуальный непосредственный
Nanotechnology
Institute of Physics and IOP Publishing Limited
Vol.29, Issue32 Num.325501
2018
Статья
energy harvesting energy storage piezosupercapacitor poly(vinylidene-trifluoroethylene) single-walled carbon nanotubes
Capacitance Display devices Electric energy storage Electron devices Energy harvesting Energy storage Flexible electronics Open circuit voltage Optoelectronic devices Piezoelectricity Single-walled carbon nanotubes (SWCN) Wearable technology Yarn Mechanical flexibility Mechanical impacts Optical transparency Output characteristics piezosupercapacitor Specific capacitance Sustainable power Trifluoroethylene Supercapacitor
The integration of energy harvesting and energy storage in a single device both enables the conversion of ambient energy into electricity and provides a sustainable power source for various electronic devices and systems. On the other hand, mechanical flexibility, coupled with optical transparency of the energy storage devices, is required for many applications, ranging from self-powered rolled-up displays to wearable optoelectronic devices. We integrate a piezoelectric poly(vinylidene-trifluoroethylene) (P(VDF-TrFE)) film into a flexible supercapacitor system to harvest and store the energy. The asymmetric output characteristics of the piezoelectric P(VDF-TrFE) film under mechanical impacts results in effective charging of the supercapacitors. The integrated piezo-supercapacitor exhibits a specific capacitance of 50 F g-1. The open-circuit voltage of the flexible and transparent supercapacitor reached 500 mV within 20 s during the mechanical action. Our hybridized energy harvesting an