Размер шрифта
Цветовая схема
Изображения
Форма
Межсимвольный интервал
Межстрочный интервал
стандартные настройки
обычная версия сайта
закрыть
  • Вход
  • Регистрация
  • Помощь
Выбрать БД
Простой поискРасширенный поискИстория поисков
Главная / Результаты поиска

Heat-driven size reduction of biodegradable polyelectrolyte multilayer hollow capsules assembled on CaCO3 template

Trushina D. B., Bukreeva T. V., Borodina T. N., Belova D. D., Belyakov S., Antipina M. N.
Colloids and Surfaces B: Biointerfaces
Vol.170, P. 312-321
Опубликовано: 2018
Тип ресурса: Статья

DOI:10.1016/j.colsurfb.2018.06.033

Аннотация:
Aiming to explore elevated temperatures as a tool for miniaturization of biodegradable polymer multilayer capsules, assembled on spherical vaterite micron- and submicron-sized particles, we subject the shells composed of dextran sulfate (DS) and poly-L-arginine (Parg) to a heat treatment. Changes of the capsule size are studied at various temperatures and ionic strengths of the continuous phase. Unlike some synthetic polymer multilayer shells (their response to heat treatment depends on the number of layers and their arrangement), the biodegradable Parg/DS capsules exhibit size reduction and profound compaction regardless of their initial size, number of polymer layers and polymer layer sequence. The capsule response to heat is stable at ionic strengths of the continuous phase not exceeding 0.1 M NaCl. © 2018 Elsevier B.V.
Ключевые слова:
Biodegradable polymers; Compaction; Heat-Driven size reduction; Layer-by-layer (LbL) self-assembly; Nanocapsule
calcium carbonate; dextran sulfate; polyarginine; polyelectrolyte; calcium carbonate; dextran sulfate; electrolyte; peptide; polyarginine; Article; biodegradability; continuous process; controlled study; heat; hollow capsule; ionic strength; microcapsule; particle size; priority journal; reduction (chemistry); temperature; chemistry; microcapsule; oxidation reduction reaction; particle size; porosity; surface property; Calcium Carbonate; Capsules; Dextran Sulfate; Electrolytes; Hot Temperature; Oxidation-Reduction; Particle Size; Peptides; Porosity; Surface Properties
Язык текста: Английский
ISSN: 1873-4367
Trushina D. B. Dar`ya Borisovna 1989-
Bukreeva T. V.
Borodina T. N. Tat`yana Nikolaevna 1982-
Belova D. D.
Belyakov S.
Antipina M. N.
Трушина Д. Б. Дарья Борисовна 1989-
Букреева Т. В.
Бородина Т. Н. Татьяна Николаевна 1982-
Белова Д. Д.
Беляков С.
Антипина М. Н.
Heat-driven size reduction of biodegradable polyelectrolyte multilayer hollow capsules assembled on CaCO3 template
Текст визуальный непосредственный
Colloids and Surfaces B: Biointerfaces
Elsevier Science Publisher B.V.
Vol.170 P. 312-321
2018
Статья
Biodegradable polymers Compaction Heat-Driven size reduction Layer-by-layer (LbL) self-assembly Nanocapsule
calcium carbonate dextran sulfate polyarginine polyelectrolyte calcium carbonate dextran sulfate electrolyte peptide polyarginine Article biodegradability continuous process controlled study heat hollow capsule ionic strength microcapsule particle size priority journal reduction (chemistry) temperature chemistry microcapsule oxidation reduction reaction particle size porosity surface property Calcium Carbonate Capsules Dextran Sulfate Electrolytes Hot Temperature Oxidation-Reduction Particle Size Peptides Porosity Surface Properties
Aiming to explore elevated temperatures as a tool for miniaturization of biodegradable polymer multilayer capsules, assembled on spherical vaterite micron- and submicron-sized particles, we subject the shells composed of dextran sulfate (DS) and poly-L-arginine (Parg) to a heat treatment. Changes of the capsule size are studied at various temperatures and ionic strengths of the continuous phase. Unlike some synthetic polymer multilayer shells (their response to heat treatment depends on the number of layers and their arrangement), the biodegradable Parg/DS capsules exhibit size reduction and profound compaction regardless of their initial size, number of polymer layers and polymer layer sequence. The capsule response to heat is stable at ionic strengths of the continuous phase not exceeding 0.1 M NaCl. © 2018 Elsevier B.V.