Размер шрифта
Цветовая схема
Изображения
Форма
Межсимвольный интервал
Межстрочный интервал
стандартные настройки
обычная версия сайта
закрыть
  • Вход
  • Регистрация
  • Помощь
Выбрать БД
Простой поискРасширенный поискИстория поисков
Главная / Результаты поиска

Inference of clonal selection in cancer populations using single-cell sequencing data

Skums P., Tsyvina V., Zelikovskij A. Z.
Bioinformatics
Vol.35, Issue14, Num.btz392
Опубликовано: 2019
Тип ресурса: Материалы конференции (Статья)

DOI:10.1093/bioinformatics/btz392

Аннотация:
Summary: Intra-tumor heterogeneity is one of the major factors influencing cancer progression and treatment outcome. However, evolutionary dynamics of cancer clone populations remain poorly understood. Quantification of clonal selection and inference of fitness landscapes of tumors is a key step to understanding evolutionary mechanisms driving cancer. These problems could be addressed using single-cell sequencing (scSeq), which provides an unprecedented insight into intra-tumor heterogeneity allowing to study and quantify selective advantages of individual clones. Here, we present Single Cell Inference of FItness Landscape (SCIFIL), a computational tool for inference of fitness landscapes of heterogeneous cancer clone populations from scSeq data. SCIFIL allows to estimate maximum likelihood fitnesses of clone variants, measure their selective advantages and order of appearance by fitting an evolutionary model into the tumor phylogeny. We demonstrate the accuracy our approach, and show
Ключевые слова:
cell clone; DNA sequence; human; neoplasm; phylogeny; software; Clone Cells; Humans; Neoplasms; Phylogeny; Sequence Analysis, DNA; Software
Язык текста: Английский
ISSN: 1460-2059
Skums P.
Tsyvina V.
Zelikovskij A. Z. Aleksandr Zinovij 1960-
Скумс П.
Цyвина В.
Зеликовский А. З. Александр Зиновий 1960-
Inference of clonal selection in cancer populations using single-cell sequencing data
Текст визуальный непосредственный
Bioinformatics
Oxford University Press
Vol.35, Issue14 Num.btz392
2019
Материалы конференции (Статья)
cell clone DNA sequence human neoplasm phylogeny software Clone Cells Humans Neoplasms Phylogeny Sequence Analysis, DNA Software
Summary: Intra-tumor heterogeneity is one of the major factors influencing cancer progression and treatment outcome. However, evolutionary dynamics of cancer clone populations remain poorly understood. Quantification of clonal selection and inference of fitness landscapes of tumors is a key step to understanding evolutionary mechanisms driving cancer. These problems could be addressed using single-cell sequencing (scSeq), which provides an unprecedented insight into intra-tumor heterogeneity allowing to study and quantify selective advantages of individual clones. Here, we present Single Cell Inference of FItness Landscape (SCIFIL), a computational tool for inference of fitness landscapes of heterogeneous cancer clone populations from scSeq data. SCIFIL allows to estimate maximum likelihood fitnesses of clone variants, measure their selective advantages and order of appearance by fitting an evolutionary model into the tumor phylogeny. We demonstrate the accuracy our approach, and show